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This article considers an important aspect of the general sequential analysis problem where a process is in control up to some unknown
point i D º ¡ 1, after which the distribution from which the observations are generated changes. An extensive sequential analytic literature
assumes that the change in distribution is abrupt, for example, from N.0;1/ to N.¹;1/. There is also an extensive literature that deals with
a gradual change in the case where the decision (whether or not a change has occurred) is based on a � xed set of observations, rather than
an ongoing process of decision making every time a new observation is obtained. However, there is virtually no literature on the practical
case of sequentially detecting a gradual change in distribution (visualize a machine deteriorating gradually). This article considers solutions
to this problem. As a � rst approximation, the gradual change problem can be modeled as a change from a � xed distribution to a model of
simple linear regression with respect to time (i.e., there is an abrupt change of slope, from a 0 to a nonzero slope). We study an extension of
this case to a general context of sequential detection of a change in the slope of a simple linear regression. The residuals are assumed to be
normally distributed. We consider both the case in which the baseline parameters are known and the case in which they are not. Finally, as
an application, we monitor for an increase in the rate of global warming.
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1. INTRODUCTION

Imagine that the behavior of a machine is being monitored
over time. The concern is that after some point in time, the ma-
chine will start to operate incorrectly. The classical sequential
analysis problem is to raise an alarm as soon as possible af-
ter the machine begins to perform unsatisfactorily, subject to a
constraint on the rate of false alarms. Among various policies
calibrated to have the same expected number of observations
until raising a false alarm, the optimal choice is the one that
minimizes the expected number of observations to raising an
alarm after the machine begins to perform inadequately.

The classical changepointproblem—that of an abrupt change
from one distribution to another in a sequence of indepen-
dent random variables—is well understood. Ef� cient detection
methods are Cusum and Shiryayev–Roberts, both of which are
known to have optimality properties when both pre-change and
post-change distributions are known (Moustakides 1986; Ri-
tov, 1990; Pollak, 1985; Yakir, 1997). These techniques can be
adapted to cases where the post-change and/or pre-change dis-
tributions are partially or fully unknown to obtain reasonably
ef� cient procedures (Pollak, 1987; Gordon and Pollak, 1997;
Yakir, 1998; Lorden and Pollak 2003; and references therein).

However, in many applications it is more natural to assume
that the change is gradual. The decline in a company’s mar-
ket share due to a new competitor’s arrival is typically gradual;
the impact of a social movement is seldom abrupt, even if it is
ultimately limited, and the deterioration in the performance of
a machine might not happen all at once (Sigal, 1998). In all of
these cases, even if the changeultimately leads to a new equilib-
rium, it may be possible to detect the change in its early stages,
where a reasonable description of the process is a change of the
slope of the linear regression with respect to time, from 0 to a
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nonzero value. These considerations lead us to study the prob-
lem of sequential detection of a change in linear regression. In
addition, of course, this problem is of interest on its own merits.

Often, simple Cusum procedures have been used (on regres-
sion residuals) to detect a change in regression. These proce-
dures are designed for a different problem: detecting an abrupt
change from mean 0 to another constant mean. Evaluations of
the average run lengths of these procedures that take into ac-
count the fact that the post-change mean is not constant have
appeared in the literature (Aerne, Champ, and Rigdon 1991;
Gan, 1992, 1996). However, procedures designed speci� cally
for detecting a change from one regression to another have not
yet been developed. It is this void that we try to � ll in this arti-
cle.

Formally, the problem that we study is expressed as follows.
Initially, when the process is in control, it yields independent
observations, Yi, which are normally distributed with variance
¾ 2 and mean .® C ¯xi/¾ , where xi is a � xed scalar regres-
sor. (We choose to parameterize the mean in this form to ex-
ploit subsequently an invariance structure.) Should the process
go out of control, the distribution of Yi will be N..® C ¯xi C
°i; º/¾; ¾ 2/ for i ¸ º, where º is the changepoint. We concen-
trate on the case where the regression is against time .xi D i/
and the change that we are concernedwith detecting is a change
of slope; that is, °i; º is of a simple form, e.g. µ.i¡ .º ¡ 1//. We
consider both the case where the baseline parameters ®, ¯ , and
¾ are known (in which case, without loss of generality, the data
can be transformed to have ¾ D 1 and ® D ¯ D 0, also perti-
nent to detecting a gradual change from a � xed distribution, as
described earlier) and the case where they are not. The latter
case is also of applied interest; imagine a product, recently in-
troduced, whose share of the market is increasing at a steady
rate, and one is hopeful—and on the lookout—for an increase
of this rate. Because the product is new, the baseline parameters
are not known.

Previous studies have shown that pretending that simple es-
timates of the unknown baseline parameters are their true val-
ues often results in large discrepancies between true and nom-
inal values of operating characteristics (Wheeler 2000). The
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procedures that we propose circumvent this dif� culty. Our ap-
proach is likelihood ratio based, and we consider and com-
pare appropriate Cusum and Shiryayev–Roberts schemes. Al-
though we label our schemes by the names “Cusum” and
“Shiryayev–Roberts,” the actual surveillance statistics used dif-
fer considerably from the classical Cusum and Shiryayev–
Roberts statistics, which were developed for the abrupt change-
of-distribution problem. They are related only in their theoreti-
cal approaches; Cusum is a maximum likelihood approach, and
Shiryayev–Roberts is a quasi-Bayesian approach. The differ-
ence is due to the different nature of the two problems; for ex-
ample, when monitoring for a change in the slope of a regres-
sion against time, the post-change observations are not identi-
cally distributed (and neither are the pre-change observations if
the pre-change slope differs from 0).

There is a large literature on the retrospective problem of
detecting a change in regression. This has little to do with the
sequential version of the problem (which is the content of this
article), for two reasons. For one thing, in the retrospective
problem, where one looks for a change in a set of (past) ob-
servations, the setting is one of hypothesis testing, and the op-
erating characteristics are probabilities of error, whereas in the
sequential context the decision to be made is whether or not to
continue sampling, and the operating characteristics are aver-
age run lengths. More important, in the retrospective case, the
analysis usually assumes that there are many post-change ob-
servations, whereas in the sequential (prospective!) context, the
goal is to see to it that such observations are few.

The literature for applying sequential methods for detecting
a change in regression is scant. No exact optimality results are
known for this case. Yao (1993) studied the case where the re-
gressors are bounded and obtained � rst-order asymptotic opti-
mality results. Yakir, Krieger, and Pollak (1999) considered a
case of unboundedregressors (which includes linear regression
over time) and obtained� rst-order asymptoticoptimalityresults
for this case. Practical guidelines for constructingand applying
such schemes (in � nite sample size contexts) have not been de-
veloped. It is this gap that we try to narrow in this article. We
concentrate on the case where the regressor is time and the er-
rors are normally distributed.We construct and compare a num-
ber of procedures. We considerboth the case of known baseline
parameters and the case of unknown baseline parameters. We
supply operating characteristics, cutoff values as functions of
the average run length (ARL) to false alarm, as well as a simple
inequality for the ARL to false alarm. Using Monte Carlo, we
compare a number of schemes whose ARL to false alarm is 750
and suggest one scheme that seems to be the most appropriate
for a given set of circumstances.

We apply our results to data on the global warming phe-
nomenon. It is known that global temperatures have been ris-
ing during the last century. Is the rate of global warming rising
as well? Pretending that we were monitoring on-line during the
last half century for an increase in the rate, we apply a detection
scheme to the sequence of global yearly average temperatures
since World War II. We � nd that in 1983 a rise in the rate of
global warming has occurred, which we estimate (in 1983) to
have occurred in 1976. We also � nd that the rate has not risen
again since 1976.

The article is organized as follows. In Section 2 we discuss
the known baseline case and present four different types of sur-
veillance schemes for detecting an increase in regression slope.
For these procedures, in Section 3 we evaluate (by Monte Carlo)
the cutoff value as a functionof the ARL to false alarm. We also
compare (by Monte Carlo) their maximal expected delay when
the ARL to false alarm is 750. In Sections 4 and 5 we report
on the analogous construction, evaluation, and comparison for
the unknown baseline case. In Section 6 we present the applica-
tion to the global warming phenomenon. We devote Section 7
to a discussion of methodology.We relegate proofs for formulas
appearing in Sections 2 and 4 and discussion of computational
issues to the Appendix.

2. KNOWN BASELINE PARAMETERS

Without loss of generality, let Y1;Y2; : : : be a sequence of
independent random variables, and let Pº and Eº denote prob-
ability and expectation when Y1; : : : ;Yº¡1 » N.0;1/ and Yi »
N.°i; º; 1/ for i ¸ º. The value º D 1 means that no change
ever takes place. The operatingcharacteristicsof a stopping rule
N are taken, as usual, to be the ARL to false alarm, E1N, and
the maximal expected delay to detection, sup1·º<1 Eº.N ¡
.º ¡ 1/ j N ¸ º/.

The basic building block for the procedures that we study is
the likelihood ratio of the observations at º D k versus º D 1,
that is

3n
k D dPºDk.Y1; : : : ;Yn/

dPºD1.Y1; : : : ; Yn/

D exp

» nX

iDk

¡
°i; kYi ¡ ° 2

i; k=2
¢¼

: (1)

In practice, the post-change parameter values, °i; º , are un-
known. In the classical changepoint problem, the usual pro-
cedure is either to take representative values for the unknown
post-change parameters, to take a prior over possible post-
change parameter values, or to estimate them.

Procedures that are known to have asymptotic � rst-order op-
timality properties are Cusum and Shiryayev–Roberts (Yao,
1993; Yakir et al., 1999). The Cusum procedure has a stopping
rule of the form

TA D min
n

n j max
1·k·n

3n
k ¸ A

o
: (2)

The Shiryayev–Roberts procedure has the stopping rule

NA D min

»
n j

nX

kD1

3n
k ¸ A

¼
: (3)

To implement these rules, one needs to know the relationship
between the cutoff value A and the ARL to false alarm E1TA

(or E1NA), to set the cutoff value so as to achieve a prespeci� ed
ARL to false alarm.

The Shiryayev–Roberts rule has here, as elsewhere, the lower
bound E1NA ¸ A. The reason is the usual one: f3n

kg1
nDk is a

P1 martingale with unit mean; hence f
Pn

kD1 3n
k ¡ ng1

nD1 is a
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P1 martingale with mean 0, and so, by the optional sampling
theorem,

0 D E1

Á
NAX

kD1

3
NA
k ¡ NA

!

D E1

NAX

kD1

3
NA
k ¡ E1NA ¸ A ¡ E1NA:

Hence E1NA ¸ A. This means that one can construct a con-
servative procedure that will attain a prespeci� ed ARL to false
alarm by setting the cutoff level A to be equal to the prespeci� ed
value. Because TA ¸ NA, the Cusum procedure has the same
lower bound. However, one gains ef� ciency by evaluating ex-
actly the relationship between the cutoff level and the ARL to
false alarm. We obtain this relationship by Monte Carlo in the
next section.

Because of the martingale property of the Shiryayev–Roberts
statistic, it is natural to require that any variation of the scheme
due to estimation of unknown parameters should preserve this
martingale structure. In this vein, we de� ne the following pro-
cedures, based on the assumption that the surveillance is being
conducted for a change of slope.

2.1 Choosing a Representative

Choose µ and de� ne °i; º D µ.i ¡ .º ¡ 1//. Here

3n
k D 3n

k.µ/

D exp

»
µ

nX

iDk

.i ¡ k C 1/Yi ¡ µ 2.n ¡ k C 1/.n ¡ k C 2/

¢ .2n ¡ 2k C 3/=12

¼
; (4)

and the Cusum and the Shiryayev–Roberts rules are

T .µ /
A D min

n
n j max

1·k·n
3n

k.µ/ ¸ A
o

(5)

and

N.µ /
A D min

»
n j

nX

kD1

3n
k .µ/ ¸ A

¼
: (6)

2.2 Choosing a Prior and Creating a Mixture

The putative change is a change of slope, so that °i; º D µ.i ¡
.º ¡ 1//. But now we must choose a prior F and pretend that
µ » F. Here

3n
k D 3n

k.F/ D
Z

3n
k.µ/dF.µ/: (7)

If the surveillance is geared to detect an increase of slope, then
a choice

F.µ/ D

±
8

¡
µ ¡¹

¿

¢
¡ 8

¡
¡ ¹

¿

¢²C

8
¡

¹
¿

¢

yields a tractable form for 3n
k ,

3n
k.F/ D

exp
©
¡ 1

2
¹2

¿ 2

ª

¿8
¡

¹
¿

¢q
1
¿ 2 C .n¡kC1/.n¡kC2/.2n¡2kC3/

6

¢ exp

8
><

>:
1

2

±Pn
iDk.i ¡ k C 1/Yi C ¹

¿2

²2

1
¿2 C .n¡kC1/.n¡kC2/.2n¡2kC3/

6

9
>=

>;

¢ 8

0

@
Pn

iDk.i ¡ k C 1/Yi C ¹

¿ 2q
1
¿2 C .n¡kC1/.n¡kC2/.2n¡2kC3/

6

1

A : (8)

If the surveillance is geared to detect a change (either increase
or decrease) of slope, then a simple scheme prescribes choosing
a representative µ and a prior F D B§µ that realizes µ and ¡µ

each with probability 1/2. Here

3n
k.B§µ / D

3n
k.µ/ C 3n

k.¡µ/

2
: (9)

A somewhat broader prior is

F.µ/ D 1
2

8

³
µ ¡ ¹

¿

´
C 1

2
8

³
µ C ¹

¿

´
;

for which

3n
k.F/ D 1

2

exp
©
¡ 1

2
¹2

¿ 2

ª

¿

q
1
¿2 C .n¡kC1/.n¡kC2/.2n¡2kC3/

6

¢

2

4exp

(
1

2

¡Pn
iDk.i ¡ k C 1/Yi C ¹

¿2

¢2

1
¿ 2 C .n¡kC1/.n¡kC2/.2n¡2kC3/

6

)

C exp

(
1

2

¡Pn
iDk.i ¡ k C 1/Yi ¡ ¹

¿2

¢2

1
¿2 C .n¡kC1/.n¡kC2/.2n¡2kC3/

6

)3

5 ; (10)

which simpli� es somewhat if ¹ is chosen to be 0. The Cusum
and Shiryayev–Roberts rules are

TF
A D min

n
n j max

1·k·n
3n

k.F/ ¸ A
o

(11)

and

NF
A D min

»
n j

nX

kD1

3n
k.F/ ¸ A

¼
: (12)

The results of this article can be extended to nonnormal pri-
ors. Normal priors are chosen in part for their computational
tractability,with the realization that the literature suggests (Pol-
lak, 1987) that the results in this context are not sensitive to the
exact shape of the prior.

2.3 Choosing an Estimator

Again, the putative post-change parameter is °i; º D µ.i ¡
.º ¡ 1//, but here µ is to be estimated. To preserve the mar-
tingale structure of the Shiryayev–Roberts statistic, we follow
Lorden and Pollak (2003) and use an asymptotically ef� cient
estimator, the maximum likelihood estimator (MLE), based on
the � rst n ¡ 1 observations for the likelihood of Yn. (This is not
merely a theoretical artifact; adding the nth observation into the
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estimation of parameters may hurt the ARL to false alarm, ne-
cessitating a higher cutoff level, which would obviate any gain
in detection time due to the slightly better estimate of the un-
known parameters.) Here we use

Oµ n
k D

6
Pn¡1

iDk .i ¡ k C 1/Yi

.n ¡ k/.n ¡ k C 1/.2n ¡ 2k C 1/
(13)

if the surveillance is geared to detect a change, and . Oµ n
k /C if it

is geared to detect an increase. So

3n
k. OµC/ D exp

» nX

iDk

£
. Oµ i

k/C.i ¡ k C 1/Yi

¡ .. Oµ i
k/

C/2.i ¡ k C 1/2=2
¤¼

;

(14)

3n
k. Oµ/ D exp

» nX

iDk

£
. Oµ i

k/.i ¡ k C 1/Yi

¡ .. Oµ i
k//

2.i ¡ k C 1/2=2
¤¼

;

and

TA. OµC/ D min
n
n j max

1·k·n
3n

k. OµC/ ¸ A
o

;

TA. Oµ/ D min
n

n j max
1·k·n

3n
k. Oµ/ ¸ A

ª
;

(15)

NA. OµC/ D min

»
n j

nX

kD1

3n
k. OµC/ ¸ A

¼
;

NA. Oµ/ D min

»
n j

nX

kD1

3n
k. Oµ/ ¸ A

¼
:

2.4 A Semiparametric Estimator

The post-change regression may be nonlinear.The aforemen-
tioned methods can be applied to more complicated putative
post-change models. For example, if

°i; º D µ1 C µ2.i ¡ .º ¡ 1// C µ3.i ¡ .º ¡ 1//2;

then one can choose representative values for µ1, µ2, and µ3;
a prior for µ1, µ2, and µ3 ; or an estimator for µ1, µ2, and
µ3. Following Yakir et al. (1999), here, rather than consider
a nonlinear parametric form for °i; k, we instead consider the
case where °i; k is estimated nonparametrically by Yi¡1. (Al-
though Yi¡1 is an underestimate of °i; k—if the change is an in-
crease in mean—it should be reasonably close no matter what
the pre-change mean function.) Then the post-change mean
(® C ¯xi C °i; k) is semiparametric, and thus

3n
k.semiparametricC/ D exp

» nX

iDk

¡
YiY

C
i¡1 ¡ .YC

i¡1/2=2
¢¼

;

(16)

3n
k.semiparametric/ D exp

» nX

iDk

¡
YiYi¡1 ¡ Y2

i¡1=2
¢¼

;

and

TSPC
A D min

n
n j max

1·k·n
3n

k.semiparametricC/ ¸ A
o
;

TSP
A D min

n
n j max

1·k·n
3n

k.semiparametric/ ¸ A
o
;

(17)

NSPC
A D min

»
n j

nX

kD1

3n
k.semiparametricC/ ¸ A

¼
;

NSP
A D min

»
n j

nX

kD1

3n
k.semiparametric/ ¸ A

¼
;

are the procedures for detecting an increase in slope and detect-
ing a change.

2.5 Pretending that the Post-change
Mean is Constant

The main thrust of this article is the case where baseline pa-
rameters are unknown, which will be dealt with in the next sec-
tion. Part of the rationale for studying the procedures described
earlier in the known baseline case is to get a picture of the regret
due to the ignorance of baseline parameter values when they
are unknown. However, the case of known baseline parameters
is also of interest in its own right. In this context, it is natural
to question whether the procedures outlined earlier have an ad-
vantage over pretending that the problem is detecting an abrupt
change of the mean of the pre-change residuals to a constant
post-change mean. The answer to this question seems to de-
pend on the ARL to false alarm, as will be described presently.
(This question is not relevant in the unknown baseline case; see
remark 4 in Sec. 7.)

Without loss of generality, consider the set of observation to
be the sequence of residuals (from the pre-change regression),
so that again they are iid N.0;1/ random variables (before to the
change). We now pretend that post-change the mean increases
to a value ¹ > 0. If ¹ is unknown, then the likelihood ratio for
º D k is

fºDk.X1;X2; : : : ;Xn/

fºD1.X1;X2; : : : ;Xn/
D exp

»
¹

nX

iDk

Xi ¡ .n ¡ k C 1/¹2=2

¼
:

[The classical Cusum raises an alarm at the � rst time n that the
maximum (over 1 · k · n) of these likelihood ratios exceeds a
prespeci� ed level.] When ¹ is unknown, various methods have
been proposed, in a vein similar to the method developedearlier
for the change-of-slope-of-regression detection problem. One
method that has been gaining attention recently is the gener-
alized likelihood ratio (GLR) Cusum. When monitoring for a
change in mean, the GLR is obtained by estimating ¹ via

¹n
k D 1

n ¡ k C 1

nX

iDk

Xi

when monitoring for a change in mean

or
¡
¹n

k

¢C
when monitoring for an increase in mean;

and inserting this in the formula for the likelihood ratio. The
GLR Cusum raises an alarm at the � rst time that the maximum
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(over 1 · k · n) of these (pseudo) likelihood ratios exceeds a
prespeci� ed level, that is, at

TGLR
A D min

n
n j max

1·k·n
exp

©
.n ¡ k C 1/

¡
¹n

k

¢2
=2

ª
¸ A

o

or

TGLRC
A D min

n
n j max

1·k·n
exp

©
.n ¡ k C 1/

¡
.¹n

k/C¢2
=2

ª
¸ A

o
:

3. MONTE CARLO–KNOWN
BASELINE PARAMETERS

We conducted a Monte Carlo study of detecting an increase
in slope. From the methods described in Sections 2.1–2.4, we
chose six procedures. For each of these procedures, we con-
structed a Cusum and a Shiryayev–Roberts scheme. We se-
lected µ D :05, µ D :10, and µ D :20 as three representative val-
ues for the post-change slope, believing these to be values most
often encountered in practice. We chose ¹ D :10 and ¿ D :05
for a mixture

F.x/ D
h
8

± x ¡ ¹

¿

²
¡ 8

±
¡

¹

¿

²i.
8

±¹

¿

²
;

the rationale being that this prior captures the practical range
of values without giving weight to extremes. As an estimation
procedure, we simulated the one described in Section 2.3 and
simulated the semiparametric scheme described in Section 2.4.
In addition, we ran a simulation of the GLR Cusum procedure
described in Section 2.5.

We ran 62,500 repetitions for each method when there is no
change in slope [P1; all observations are N.0; 1/] to evalu-
ate the cutoff value A required to obtain a prespeci� ed ARL to
false alarm, E1N. The prespeci� ed values of E1N were in the
range (100, 1,500). The plots of A versus E1TA and of A versus
E1NA were almost perfect straight lines (correlations >:999);
the results are described in Table 1.

Subsequently, we ran each of the procedures when a change
is in effect from the very beginning .º D 1/. [The reason for
choosing º D 1 is that this is the value of º that maximizes both
E.TA ¡ .º ¡1/ j TA ¸ º/ and E.NA ¡ .º ¡ 1/ j NA ¸ º/.] We ran
each procedure with a number of different post-change mean
functions, some linear, some having only a quadratic term, and
some having both. Each combinationwas run 10,000 times. All
of the procedures are engineered to have ARL to false alarm
equal to 750. The cutoff values were obtainedfrom Table 1. The
means and standard deviations of the 10,000 runs are reported
in Table 2.

Table 2 indicates that if one can assume that the regression
with respect to time will be linear, then among the methods de-
scribed in Sections 2.1–2.4, the Cusum mixture rule seems to be
the best choice, unless one is concerned about detecting a very
small change of slope. If quadratic terms are also considered to
be possible, then the Cusum estimation procedure seems prefer-
able. The semiparametric rule does surprisingly well, despite its
simplicity. Another surprise is that even if the true post-change
slope is µ , the method that uses the true µ as the representative
value is not always the best.

Obviously, at ARL to false alarm equal to 750, the GLR
Cusum does (somewhat) better than the other procedures out-
lined in this section, as is clear from the simulations reported in
Table 2. This phenomenon, though surprising, has been noticed
in a similar context, that of detecting a gradual change from
one mean to another (Sigal, 1998). However, for larger ARLs
to false alarm, the picture changes. Asymptotically, when the
ARL to false alarm is large (i.e., the cutoff level is large), it
takes the GLR Cusum more time on average to detect a change
of regression slope from 0 to µ than the other procedures out-
lined in this section. To see this, suppose that º D 1. In this
case, note that max1·k·n.¹n

k/2=2 ¼ .¹n
1/2=2 ¼ µ 2n2=8, and it

can be shown that the average delay to detection is of the or-
der log1=2.ARL to false alarm/. A similar analysis for the other
procedures outlined in this section (the estimated linear proce-
dure is the most transparent) yields an average delay to detec-
tion of order log1=3.ARL to false alarm/.

4. UNKNOWN BASELINE PARAMETERS

Again, we assume that Y1;Y2; : : : are independent,but now

Yi » N
¡
.® C ¯xi/¾; ¾ 2¢

for i D 1; : : : ; º ¡ 1;

(18)
Yi » N

¡
.® C ¯xi C °i; º/¾; ¾ 2¢

for i D º; º C 1; : : : ;

where the regressors xi are known (xi D i for regression against
time) and none of the parameters ®, ¯ , or ¾ is known. We as-
sume that º ¸ 4, so that Y1, Y2 , and Y3 are pre-change obser-
vations, and that (by design) x1 6D x2. The methods described
below are based on a reduction by invariance. De� ne the recur-
sive residuals

Zi D
r

i ¡ 1
i

.Yi ¡ SYi¡1/; i D 2;3; : : : : (19)

These are independent, normally distributed random variables
(both before and after a change) with variance ¾ 2, and their

Table 1. Cutoff Values A as a Function of ARL to False Alarm of Various Procedures for Detecting an Increase of Slope

Method Cusum Shiryayev–Roberts

Representative µ D :05 A D :59231 C :04958 ¢ E1TA A D 19:14466 C :55526 ¢ E1NA
Representative µ D :10 A D :80269 C :06696 ¢ E1TA A D 17:87843 C :46122 ¢ E1NA
Representative µ D :20 A D 1:37147 C :08563 ¢ E1TA A D 14:65771 C :37074 ¢ E1NA
Mixture F(x) A D 1:57793 C :04849 ¢ E1TA A D 19:29980 C :47550 ¢ E1NA

D 8. x¡:10
:05

/¡8.¡2/

8.2/

Estimation . Oµn
k /C A D 1:30997 C :05870 ¢ E1TA A D 19:87650 C :43830 ¢ E1NA

D .
Pn¡1

iDk .i¡kC1/Yi /
C

1
6 .n¡k/.n¡kC1/.2n¡2kC1/

Semiparametric A D 3:18234 C :03592 ¢ E1TA A D 22:47070 C :30950 ¢ E1NA
GLR A D ¡19:44368 C :458654 ¢ E1TA
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Table 2. Monte Carlo Estimates of Maximal Average Delay to Detection, EºD1N, Based on 10,000 Repetitions, Where the ARL to False Alarm,
E1N D 750, for Various Methods and True Post-change Regressions

Post-change regression Representative

Linear Quadratic
slope coef�cient µ D :05 µ D :10 µ D :20 Mixturea Estimationb Semiparametric GLR

:01 :00 52:66 17:0 55:37 19:0 59:65 22:0 55:75 19:0 57:65 19:0 65:54 24:0 55:90 17:9
52:92 17:0 55:16 19:0 59:09 21:0 53:86 17:0 59:39 17:0 66:62 24:0

:05 :00 20:09 4:0 19:91 5:0 20:54 6:0 19:98 5:0 21:17 6:0 22:25 7:0 20:68 5:5
21:31 4:0 20:22 5:0 20:53 6:0 20:54 5:0 22:48 5:0 23:18 6:0

:10 :00 14:32 2:0 13:13 3:0 12:99 3:0 12:97 3:0 13:60 3:0 14:10 4:0 13:46 3:3
15:81 2:0 13:80 2:0 13:13 3:0 13:87 3:0 14:65 3:0 14:86 4:0

:20 :00 10:81 1:0 9:29 1:0 8:53 2:0 8:85 1:0 8:77 2:0 8:89 2:0 8:75 2:0
12:21 :9 10:12 1:1 8:87 2:0 9:79 1:0 9:57 2:0 9:47 2:0

:00 :05 8:92 :50 7:87 :70 7:17 :90 7:47 :8 7:10 1:0 7:15 1:1 7:16 1:1
9:83 :50 8:42 :60 7:43 :70 8:05 :7 7:47 :9 7:42 1:0

:00 :10 7:42 :50 6:49 :50 5:76 :60 6:07 :5 5:47 :8 5:51 :8 5:47 0:8
8:15 :40 7:00 :30 6:05 :50 6:60 :5 5:78 :7 5:73 :8

:00 :20 6:08 :30 5:34 :50 4:77 :40 5:00 :3 4:23 :6 4:26 :6 4:20 0:6
7:00 :05 5:97 :20 5:00 :30 5:43 :5 4:49 :6 4:45 :6

:10 :05 8:28 :50 7:19 :60 6:42 :80 6:74 :7 6:23 1:0 6:27 1:1 6:24 1:0
9:18 :40 7:79 :50 6:73 :70 7:35 :6 6:62 :9 6:55 1:0

:10 :10 7:07 :30 6:14 :40 5:40 :50 5:72 :5 5:01 :8 5:04 :8 5:02 0:8
7:98 :20 6:75 :40 5:73 :50 6:22 :5 5:34 :7 5:28 :7

:10 :20 6:00 :10 5:14 :30 4:58 :50 4:90 :3 4:00 :6 4:05 :6 3:96 0:6
6:98 :20 5:86 :30 4:91 :30 5:17 :4 4:26 :6 4:24 :6

1:00 :20 5:00 :02 4:05 :20 3:62 :50 3:97 :2 2:73 :5 2:77 :5 2:61 0:5
5:99 :09 4:94 :20 3:98 :10 4:07 :3 2:95 :4 2:95 :4

1:00 1:00 4:00 :00 3:00 :06 3:00 :02 3:00 :0 2:07 :3 2:08 :3 1:92 0:3
4:02 :10 3:99 :10 3:00 :00 3:01 :1 2:11 :3 2:14 :4

NOTE: The four numbers in each cell refer to
mean (Cusum) s.d. (Cusum)

mean (Shiryayev–Roberts) s.d. (Shiryayev–Roberts).

aMixture fN.:10; :052/ j N.:10; :052/ > 0g.

bEstimation Oµ iC
A D

.
Pn¡1

iDk .i¡kC1/Yi /
C

.n¡k/.n¡kC1/.2n¡2kC1/=6
:

means do not involve ®. Next, note that

Zi ¡ Z2

p
2

r
i ¡ 1

i

xi ¡ Nxi¡1

x2 ¡ x1

are (dependent) jointly normally distributed random variables
whose means and standard deviations are multiples of ¾ and do
not involve ® and ¯ , and whose correlations are independentof
®, ¯ , and ¾ . Hence

Wi D
Zi ¡ Z2

p
2
q

i¡1
i

xi¡Nxi¡1
x2¡x1Z3 ¡ Z2

2p
3

x3¡Nx2
x2¡x1

 ; i D 4;5; : : : (20)

is a sequence of (dependent) random variables whose (joint)
distribution does not depend on ®, ¯ , and ¾ and whose distrib-
ution when º D 1 is well de� ned. The same applies to

W¤
i D

Zi ¡ Z2
p

2
q

i¡1
i

xi¡Nxi¡1
x2¡x1

Z3 ¡ Z2
2p
3

x3¡Nx2
x2¡x1

; i D 4; 5; : : : : (21)

When the surveillance is being conducted for an increase
in slope, it is appropriate to base the procedure on the se-
quence fWng1

nD4, and when monitoring for a change of slope
(in any direction), a procedure based on fW¤

n g1
nD4 is appro-

priate. (It may seem that the denominator of Wi is a poor
surrogate for the unknown standard deviation; however, there

is a 1-to-1 correspondence between Y1;Y2;Y3;Y4; : : : ; Yn and
Y1;Y2;Y3;W4; : : : ;Wn. Therefore, by basing surveillance on
W4; : : : ;Wn, we are losing only the information contained in
the three variables Y1, Y2, and Y3.) As in the previous section,
the main building blocks will be the likelihood ratios of the se-
quence being monitored (here fWng or fW¤

n g).
Calculation of the likelihoodratios is formidable, and we rel-

egate it to the Appendix. In this section we consider the special
case where regression is against time—xi D i—and one is on
the alert for an increase or a change in slope. (The formulas
in the Appendix are implemented here after substituting i for
xi.) We develop analogs to the taking of a representative for
the unknown difference in slope caused by the change. We also
present mixture rules, although there is less technical � exibil-
ity in their construction than in the known baseline case. Be-
cause of technical dif� culties in implementing the estimation
approach in the unknown baseline case, we dwell on it only
brie� y here. Finally, we present an analog of the semiparamet-
ric procedure of Section 2.

4.1 Choosing a Representative

As in Section 2.1, choose a representative value for µ . De� ne

¹i; k D µ

r
i ¡ 1

i

³
i ¡ k C 1 ¡

.i ¡ k/.i ¡ k C 1/

2.i ¡ 1/

´C
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D µ

r
i ¡ 1

i

¡
.i ¡ k C 1/C¢ i C k ¡ 2

2.i ¡ 1/
for i;k ¸ 4;

dn D 6
.n ¡ 1/n.n C 1/

;

an D 1 C
nX

iD4

W2
i ¡ dn

Á
nX

iD4

r
i.i ¡ 1/

2
Wi C

p
3

!

;

a¤
n D 1 C

nX

iD4

.W¤
i /2 ¡ dn

Á
nX

iD4

r
i.i ¡ 1/

2
W¤

i C
p

3

!

;

bn; k D
nX

iD4

Wi¹i; k ¡ dn

Á
nX

iD4

r
i.i ¡ 1/

2
Wi C

p
3

!

(22)

¢

Á
nX

iD4

r
i.i ¡ 1/

2
¹i; k

!
;

b¤
n; k D

nX

iD4

W¤
i ¹i; k ¡ dn

Á
nX

iD4

r
i.i ¡ 1/

2
W¤

i C
p

3

!

¢
Á

nX

iD4

r
i.i ¡ 1/

2
¹i; k

!
;

cn; k D dn

Á
nX

iD4

r
.i ¡ 1/i

4
¹i; k

!2

¡ 1
2

nX

iD4

¹2
i; k;

gm.x/ D
Z 1

0
zme¡.z¡x/2=2 dz;

g¤
m.x/ D

Z 1

¡1
jzjme¡.z¡x/2=2 dz:

(Calculation of gm and g¤
m can be done with a recursion for-

mula; see Remark 3 in Sec. 7.) Then

3n
k D dPk.W4; : : : ; Wn/

dP1.W4; : : : ; Wn/

D
gn¡3

±
bn;kp

an

²

gn¡3.0/
¢ exp

©
bn; k=

p
an/2=2

ª
¢ expfcn; kg;

(23)

3n¤
k D

dPk.W¤
4 ; : : : ; W¤

n /

dP1.W¤
4 ; : : : ;W¤

n /

D
g¤

n¡3

±
b¤

n; kp
a¤

n

²

g¤
n¡3.0/

¢ exp
©
b¤

n; k=
q

a¤
n; k/

2=2
ª

¢ expfcn; kg:

To monitor for an increase in slope, the Cusum and Shiryayev–
Roberts rules are

TA D min
n

n j max
4·k·n

3n
k ¸ A

o
and

NA D min

»
n j 3 C

nX

kD4

3n
k ¸ A

¼
: (24)

To monitor for a change in slope, the Cusum and Shiryayev–
Roberts rules are

T¤
A D min

n
n j max

4·k·n
3n¤

k ¸ A
o

and

N¤
A D min

»
n j 3 C

nX

kD4

3n¤
k ¸ A

¼
: (25)

(The number 3 is added to the sum of the likelihood ratios in
the Shiryayev–Roberts statistic for aesthetic reasons only, to re-
turn it to its usual form where its expectation under P1 after n
observations is n.)

4.2 Choosing a Prior and Creating a Mixture

Denote

qn; k D
bn; k=

p
an

µ
; sn; k D ¡

cn; k

µ
:

(Note that qn; k and sn; k do not depend on µ .) Thus

3n
k.µ/ D dPk.W4; : : : ; Wn/

dP1.W4; : : : ; Wn/

D
gn¡3.µqn; k/

gn¡3.0/
exp

©
µ 2.q2

n; k C sn; k/
ª
: (26)

Let F.µ/ D 8..µ ¡ ¹/=¿/. We get

3n
k.F/ D

Z 1

¡1
3n

k.µ/
h Á..µ ¡ ¹/=¿/

¿

i
dµ

D
gn¡3

Á

¡ qn; k¹=¿ 2
q¡

q2
n; kCsn;kC 1

¿ 2

¢¡
sn; kC 1

¿ 2

¢

!

gn¡3.0/

¢
¡
q2

n; k C sn; k C 1
¿ 2

¢ m
2

¿
¡
sk; n C 1

¿ 2

¢ mC1
2

¢ exp

(
1
2

¹2

¿ 4

q2
n; k C sn; k C 1

¿2¡
q2

n; k C sn; k C 1
¿2

¢¡
sn; k C 1

¿ 2

¢ ¡ 1

2

¹2

¿2

)
:

(27)

For the fW¤
n g sequence,

3n¤
k .F/

defD
Z

3n¤
k .µ/

µ
Á

¡
µ¡¹

¿

¢

¿

¶
dµ

D
Z µ

dPk.W¤
4 ; : : : ;W¤

n /

dP1.W¤
4 ; : : : ; W¤

n /

¶µ
Á

±µ ¡ ¹

¿

²¶
dµ

will be the same as expression (27), with Wn, qn; k, and sn; k

replaced by W¤
n ,

q¤
n; k D

b¤
n; k=

p
a¤

n

µ
; and s¤

n; k D ¡
c¤

n; k

µ
:

For detecting an increase in slope, one would want a prior to
be concentrated on .0;1/. Unfortunately, there does not seem
to be such a prior that is computationally tractable. A possible
compromise is to take a N.¹; ¿ 2/ prior that gives most of its
mass to positive values, such as the N.:10; :052/ prior consid-
ered earlier for the known baseline case, without conditioning
on its being positive. As usual, the Cusum stopping rule is

TA.F/ D min
n

n j max
1·k·n

3n
k.F/ ¸ A

o
;
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and the Shiryayev–Roberts stopping rule is

NA.F/ D min

»
n j

nX

kD1

3n
k.F/ ¸ A

¼
:

For detecting a change in slope, because of the symmetry
of 3n¤

k .µ/, the prior N.¹; ¿ 2/ is equivalent to a mixture of
N.¹; ¿ 2/ and N.¡¹;¿ 2/ with equal probability, and thus is a
reasonable prior. The Cusum stopping rule is

T¤
A.F/ D min

n
n j max

1·k·n
3n¤

k .F/ ¸ A
o
;

and the Shiryayev–Roberts stopping rule is

N¤
A.F/ D min

»
n j

nX

kD1

3n¤
k .F/ ¸ A

¼
:

Taking ¹ D 0 will simplify the calculation of 3n¤
k .F/ tremen-

dously (because the gn¡3 terms cancel), but a N.0; ¿ 2/ prior
gives a relatively high probability to parameter values near 0,
which is not desirable unless detecting very small changes in
slope is important.

4.3 An Estimation Approach

In a manner similar to the known baseline case, one needs
to estimate Oµi; k to substitute for µ (in ¹i; k) in the expression
of the likelihood ratio. The estimate Oµi; k should be a function
of W4; : : : ;Wi¡1 (or W¤

4 ; : : : ;W¤
i¡1). A MLE requires consider-

able numerical integration, and, considering the fact that each
3n

k entails n ¡ k such calculations, the resulting algorithm will
be very unwieldy, rendering the approach impractical even with
present-day state-of-the-art computation. (Although when the
baseline is known, the estimation approach has a slight advan-
tage over the other methods, the inef� ciency of a non-MLE will
offset any gain.)

4.4 A Semiparametric Procedure

For an analog of the semiparametric procedure of Section 2,
de� ne for, n ¸ 4,

Ōn D
Pn

iD1 iYi ¡ nC1
2

Pn
iD1 Yi

n.n2 ¡ 1/=12
;

O®n D SYn ¡
Ōn.n C 1/

2
;

O¾ 2
n D

Pn
iD1.Yi ¡ O®n ¡ Ōni/2

n ¡ 2
;

(28)

bYi; n D Yi ¡ O®n ¡ Ōni

O¾n
;

b3n
k D exp

» nX

iDk

±
bYC

i¡1; n
bYi; n ¡

¡bYC
i¡1; n

¢2
=2

²¼
;

b3n¤
k D exp

» nX

iDk

±
bYi¡1; nbYi; n¡

¡bYi¡1; n
¢2

=2
²¼

:

The Cusum and the Shiryayev–Roberts rules are

bTA D min
n
n j n ¸ 4; max

4·k·n
b3n

k ¸ A
o

and

bNA D min

»
n j n ¸ 4; 3 C

nX

kD4

b3n
k ¸ A

¼
; (29)

for detecting an increase in slope, and are

bT¤
A D min

n
n j n ¸ 4; max

4·k·n
b3n¤

k ¸ A
o

and

bN¤
A D min

»
n j n ¸ 4; 3 C

nX

kD4

b3n¤
k ¸ A

¼
(30)

for detecting a change in slope.

5. MONTE CARLO–UNKNOWN
BASELINE PARAMETERS

We studied four procedures, each by Cusum and Shiryayev–
Roberts, all for detecting an increase in slope. In the known
baseline case, Eº.TA ¡ .º ¡ 1/ j TA ¸ º/ and Eº.NA ¡ .º ¡ 1/ j
NA ¸ º/ have a maximum at º D 1 (and for this reason we re-
garded only º D 1 in Sec. 3). However, in the unknown base-
line case, if the post-change regression is only a change of
slope (with no quadratic term or higher), then º D 1 is in-
distinguishable from º D 1. Therefore, rather than consider
sup1·º<1 Eº.TA ¡ .º ¡ 1/ j TA ¸ º/ and sup1·º<1 Eº.NA ¡
.º ¡1/ j NA ¸ º/, we ran the procedures for various values of º .

Heuristically, a method that does not take a representative for
a change in slope intrinsically estimates it. When the baseline
is unknown, such an estimate is very noisy, because it is a dif-
ference of the two estimates of the two slopes (before and after
change), unless º is large. The noisiness of the estimate will
make a change of slope less discernible. Therefore, it is to be
expected that for early changepoints (small º), the mixture, es-
timation, and semiparametric procedures will do poorly relative
to those relying on a representative value. Because of this, we
studied only the three representative procedures (µ D :05, .10,
.20). We added the semiparametric procedure to show the effect
of the baseline being unknown.

We ran 10,000 repetitions for each method when there is no
change in slope [P1; with no loss of generality, all observations
are N.0;1/] to evaluate the cutoff value A required to obtain a
prespeci� ed ARL to false alarm E1N. The prespeci� ed values
of E1N were in the range (100, 1,000). As in the known base-
line case, the plots of A versus E1TA and of A versus E1NA

were almost perfect straight lines (correlations >.999). The re-
sults are described in Table 3.

Subsequently, we ran each of the procedures when the
changepoint is º, for various values of º . (The speci� c values
were chosen because they give a picture of the speed of detec-
tion of an early change where the ARL to detection is large,
and they also illustrate how long it takes for the procedure to
act as if the baseline were known.) We ran each procedure with
a number of different post-change slope differences, and ran
each combination 1,000 times. All of the procedures had ARL
to false alarm equal to 750. The cutoff values were obtained
from Table 3. The means, the standard deviations, and number
of times the procedure did not stop before º are recorded in
Table 4.

Judging by Table 4, it seems that the Shiryayev–Roberts pro-
cedure is generally preferable to Cusum, and that the represen-
tative µ D :10 is slightly preferable to the representativeµ D :20



464 Journal of the American Statistical Association, June 2003

Table 3. Cutoff Values A as a Function of ARL to False Alarm of a Few Procedures for Detecting an Increase of Slope

Method Cusum Shiryayev–Roberts

Representative µ D :05 A D ¡1:7043 C :04580 ¢ E1N A D 34:1262 C :55189 ¢ E1N
Representative µ D :10 A D ¡1:7289 C :06254 ¢ E1N A D 13:2372 C :47620 ¢ E1N
Representative µ D :20 A D ¡2:0601 C :08366 ¢ E1N A D 10:5111 C :38115 ¢ E1N
Semiparametric A D ¡:3179 C :03155 ¢ E1TA A D 1:7865 C :27020 ¢ E1NA

Table 4. Monte Carlo Estimates of Maximal Average Delay to Detection, Eº .N ¡ º C 1 j N ¸ º/, Based on 1,000 Repetitions, Where the ARL to
False Alarm E1N D 750 for the Representative

Post-change
regression Representative

Change Slope µ D :05 µ D :10 µ D :20 Semiparametric

11 .01 722:606 628:11 1;000 678:925 634:19 1;000 712:750 681:403 1;000 736:641 580 (1,000)
708:218 674:59 1;000 680:848 689:01 1;000 698:242 676:17 1;000 743:919 596 (1,000)

.05 607:060 586:59 1;000 611:828 643:27 1;000 678:398 687:91 1;000 714:463 612 (1,000)
575:440 644:43 1;000 580:482 691:92 1;000 641:452 709:14 1;000 711:234 594 (1,000)

.10 482:249 538:82 1;000 469:219 561:72 1;000 559:743 672:33 1;000 664:079 559 (1,000)
401:222 506:17 1;000 407:191 576:79 1;000 484:182 652:83 1;000 675:152 614 (1,000)

.20 255:233 436:29 1;000 213:676 426:14 1;000 184:862 385:60 1;000 661:484 571 (1,000)
160:295 270:15 1;000 152:960 326:20 1;000 139:037 318:08 1;000 617:992 564 (1,000)

21 .01 660:927 587:57 1;000 633:645 630:36 1;000 710:167 693:60 1;000 659:445 546 (1,000)
598:634 608:76 1;000 616:925 663:47 1;000 679:790 712:20 1;000 684:967 595 (1,000)

.05 290:267 414:79 1;000 299:281 431:47 1;000 303:062 551:85 1;000 583:471 561 (1,000)
207:392 332:31 1;000 235:890 380:45 1;000 318:009 484:18 1;000 566:157 582 (1,000)

.10 60:724 57:88 1;000 58:018 91:66 1;000 87:096 180:18 1;000 477:613 514 (1,000)
49:943 44:38 1;000 44:409 70:46 1;000 66:875 127:74 1;000 461:652 516 (1,000)

.20 27:560 5:44 1;000 19:658 5:70 1;000 17:293 8:71 1;000 364:095 492 (1,000)
26:846 4:77 1;000 18:267 4:98 1;000 15:219 7:82 1;000 271:852 487 (1,000)

51 .01 361:813 491:05 1;000 429:816 499:45 990 468:820 551:68 973 548:712 525:0 (997)
296:921 444:04 1;000 415:805 522:43 976 447:705 532:42 946 572:950 546:0 (994)

.05 33:837 14:44 1;000 35:525 21:71 989 48:179 39:69 976 141:408 186:0 (994)
29:838 12:76 1;000 31:218 18:28 975 43:455 35:13 954 144:954 223:0 (945)

.10 19:304 5:18 999 17:594 6:13 993 19:349 8:31 920 34:153 20:0 (1,000)
17:837 5:11 997 16:378 5:80 979 18:232 7:68 945 33:733 18:0 (993)

.20 12:583 2:51 1;000 10:833 2:83 987 10:405 3:03 969 14:375 5:0 (1,000)
11:812 2:63 1;000 10:236 2:87 968 10:051 3:00 941 14:484 5:1 (994)

101 .01 131:990 134:10 958 173:570 221:61 921 232:686 294:69 916 288:116 312:0 (948)
120:065 123:72 919 158:128 193:51 889 222:891 285:48 883 301:146 357:0 (948)

.05 24:274 8:33 959 24:998 9:39 927 26:999 10:91 909 36:724 16:2 (971)
23:284 8:16 925 24:136 8:99 891 26:116 10:28 871 38:117 16:8 (972)

.10 15:267 3:91 963 14:680 4:46 923 15:416 5:08 908 19:009 6:3 (972)
14:850 4:02 922 14:421 4:39 890 15:146 4:97 884 19:819 6:8 (960)

.20 10:166 2:33 944 9:308 2:34 932 9:087 2:50 906 10:637 3:2 (968)
9:857 2:46 898 9:198 2:34 894 8:997 2:48 866 10:874 3:3 (963)

201 .01 70:290 35:71 832 79:964 45:96 811 94:916 58:99 808 120:279 84:0 (882)
69:077 34:25 791 79:290 43:96 772 94:133 60:06 759 125:460 87:0 (883)

.05 21:255 6:18 839 21:805 7:09 807 23:525 8:36 789 26:670 9:7 (894)
21:163 6:20 791 21:670 6:91 770 23:192 8:13 756 27:753 10:1 (872)

.10 13:859 3:55 842 13:439 3:73 807 13:849 4:06 808 15:647 4:8 (864)
13:746 3:61 772 13:437 3:68 772 13:733 4:02 763 16:116 5:1 (856)

.20 9:169 2:15 842 8:789 2:00 814 8:744 2:15 773 9:449 2:6 (885)
9:133 2:19 804 8:847 1:98 773 8:809 2:17 752 9:657 2:7 (854)

501 .01 56:124 23:23 548 61:851 25:94 538 68:812 30:04 537 74:879 34:0 (577)
56:261 23:25 522 61:558 25:53 520 68:409 29:94 509 77:084 35:0 (573)

.05 19:382 5:58 524 20:017 6:39 530 21:137 6:89 539 24:074 7:7 (598)
19:628 5:41 514 20:123 6:37 520 21:025 6:85 520 24:856 8:2 (582)

.10 13:118 3:26 550 12:892 3:40 527 13:383 3:63 548 14:156 4:3 (563)
13:229 3:31 515 12:964 3:40 507 13:463 3:58 529 14:550 4:4 (582)

.20 8:941 2:23 527 8:587 1:97 560 8:443 2:10 530 8:990 2:5 (571)
9:064 2:16 514 8:667 1:97 541 8:505 2:10 517 9:115 2:5 (564)

NOTE: The six numbers in each cell refer to
mean (Cusum) s.d. (Cusum) no. of repetitions ¸ º (Cusum)

mean (Shiryayev–Roberts) s.d. (Shiryayev–Roberts) no. of repetitions ¸ º (Shiryayev–Roberts).
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and both are superior to the representative µ D :05. When the
possibility that the post-change regression may also have non-
linear terms is relevant, Table 2 (coupled with Table 4) sug-
gests that representative µ D :20 (Shiryayev–Roberts) may be
the preferable method.

6. AN APPLICATION

It is generally recognized that we live in a period of global
warming. Yearly average global temperatureshave increased by
1±F over the last century. The phenomenon is described in the
May 1998 issue of National Geographic (Suplee 1998). Fig-
ure 1 describes the global yearly average air temperature at
Earth’s surface since World War II. (This plot is part of the dia-
gram on p. 45 of Suplee 1998, from which we obtained the data
on which Fig. 1 and the following analyses are based.)

In this section we address the more subtle question of the rate
of growth of global warming. Is the rate of growth of global
warming constant, or has it been increasing? Clearly, this is a
question of change of slope of regression. Even the onset of the
phenomenon is more of a question of change of slope than an
abrupt change of level; after all, the causes to which the global
warming phenomenonis commonly attributedhave arisen grad-
ually, so it stands to reason that the phenomenon itself will
emerge gradually. Here we apply the methods developed in this
article to analyze the post–World War II data. As we show, the
assumption of iid normally distributed errors seems to be valid
in stretches of data where the slope is constant and the variance
of the errors does not change when the slope changes, and thus
the conditions of Section 4 are satis� ed.

We apply a Shiryayev–Roberts scheme for detecting an in-
crease of slope. We analyze the data as if surveillance were
started at 1945, deciding on line (at the end of each year)
whether to raise an alarm. Thus we have no learning sample,
and we have no prior knowledge of baseline nuisance parame-
ter values. Consistent with our � ndings in the preceding sec-
tion, we apply a Shiryayev–Roberts scheme with µ D :2 as
the representative post-change parameter value. The ARL to

Figure 1. Post-World War II Yearly Average Global Temperatures at
Earth’s Surface.

Figure 2. The Representative µ D :2. Shiryayev–Roberts Control
Chart for an Increase in the Regression Slope of Post-World War II
Global Warming Data. The cutoff value is A D 296:4, for which the cor-
responding ARL to false alarm is 750.

false alarm is 750, which by Table 3 implies a cutoff value of
A D 296:4. We emphasize that the following analysis is meant
to be a demonstrationof an applicationof our methodology,not
a full-scale analysis of the global warming phenomenon.

The Shiryayev–Roberts control chart is plotted in Figure 2.
The scheme raises an alarm at 1983. Figure 3 is a plot of the
likelihood ratios 3nD1983

k , k · 1983. The likelihood is maximal
at k D 1976; therefore, we estimate that the slope increased be-
ginning in 1976. In other words, starting from 1975–1976, there
is a new slope.

At 1983 we start surveillance anew, retroactively using data
beginningwith 1975. An analysis of post-1975 data (not shown
here) does not indicate a further increase in slope.

Figure 3. The Likelihood Ratios 3nD1983
k at the Point at Which an

Alarm is Raised.
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Simple estimates of the parameter values are as follows. For
1945–1975,

temperature .±F/ D 60:710645¡ :001839£ year

(the slope is not signi� cantly different from 0; the p value is
.6278); root mean squared error (RMSE) equals .186852. For
1975–1997,

temperature .±F/ D ¡9:929249C :0339328 ¢ year;

RMSE D :167419:

In standard deviation units, the change in slope is approxi-
mately .2. The change occurred 30 observations after surveil-
lance commenced.Referring back to Table 4, the average delay
is somewhere between 7.82 and 3.00. The delay in this example
is 8, which is consistentwith the expectedvalue. For the two pe-
riods, the Durbin–Watson statistics are 2.03 and 1.59, and the p
values of the Shapiro–Wilks test for normality (of the residuals)
are .2892 and .5833.

It may be of interest to compare our results with a fully retro-
spective analysis (done taking all of the observations into con-
sideration). Wu, Woodroofe, and Mentz (2001) analyzed these
data by isotonic regression and also found that the slope was
� at from the end of World War II until 1976 (see their � g. 2), at
which time an increase occurs. Note that our analysis reaches
this conclusion in 1983 (instead of in 1999).

7. DISCUSSION

In the previous sections we have described in great detail
some of the cases that one may face in practice. In addition,
emphasis on certain theoretical nuisances might lead one to use
slightly different versions of the control strategies used. In this
section we discuss some of these considerations.

1. There are a number of other contexts that can be ap-
proached by the same methods; examples include the fol-
lowing:

a. The initial intercept and slope are known to be 0
(which is equivalent to their being known, although
different from 0), but the variance is unknown.

b. The initial slope is known to be 0, but the intercept
(the mean level) and the variance are not known.

c. The change may be in any or all of intercept, slope,
and variance, where the initial parameters may be
known, partially known, or completely unknown.

In this article, apart from their intrinsic interest, we chose
to consider the known baseline case because it serves as a
natural benchmark and the completely unknown baseline
case because it is the hardest. We chose to concentrate
only on a change of slope because it is natural to many
contexts.

2. In principle, one can choose arbitrary m ¸ 1 and base the
surveillance only on 3n

k for k ¸ m. In this article, we
choose m D 4. Choosing m > 4 will have the effect of
smaller expected delay when º ¸ m at the price of longer
expected delay when º < m.

3. In view of the apparent linearity of the cutoff values as
a function of the ARL to false alarm, one would suspect
that a theorem to that effect would be true, as is the case in
the classical changepoint context. We conjecture that the

context studied in this article differs essentially from the
classical changepointproblem, as the following reasoning
indicates.
Consider the known baseline representative µ Shiryayev–
Roberts scheme. Under P1 , when A is large, argue by
analogy with the classical changepoint problem (Pol-
lak 1987) that the expected value of the overshoot ofPn

kD1 3n
k.µ/ over A has a behavior similar to that of the

expected value of the overshoot of the sequential proba-
bility ratio test statistic 3n

1.µ/ over A. In other words, we
are lookingfor the P1¡ expectedvalue of 3¿

1.µ/=A condi-
tional on f¿ < 1g, where ¿ D minfn j 3n

1.µ/ ¸ Ag, when
A is large. Note that E1.3¿

1.µ/ j ¿ < 1/ D 1=P1.¿ <

1/. Using the probability transformation characteristic of
sequential analysis, note that

P1.¿ < 1/ D EºD1
1

3¿
1.µ/

D EºD1
expf¡.log3¿

1.µ/ ¡ logA/g
A

: (31)

Also note that

log3n
1 D µ

nX

iD1

iYi ¡ 1

2
µ

n.n C 1/.2n C 1/

6
; (32)

and so for large n,

EºD1 log3n
1 D .µ 2=12/n.n C 1/.2n C 1/

D
¡
1 C o.1/

¢
.µ 2=6/n3: (33)

The standard deviation of log3n
1 is

q
varºD1 log3n

1 D
q

.µ2=6/n.n C 1/.2n C 1/

D
¡
1 C o.1/

¢
.µ=

p
3/n3=2: (34)

Let nA D minfn j .µ 2=12/n.n C 1/.2n C 1/ ¸ logAg. Note
that

EºD1 log3
nA
1 ¡ EºD1 log3

nA¡1
1

D EºD1

µ
log

³
fºD1.YnA/

fºD1.YnA/

´¶

D .µ 2=2/n2
A: (35)

This implies that for most values of A, the expres-
sions EºD1 log3

nA
1 ¡ logA and logA ¡ EºD1 log3

nA¡1
1

are both of the order of magnitude n2
A. This, together

with (34), implies that for most values of A, ¿ is al-
most degenerate; PºD1.¿ D nA/ ¼ 1. This implies that
EºD1 expf¡.log3¿

A ¡ logA/g is not constant in A, which
in turn would mean that the ARL to false alarm of the
Shiryayev–Roberts scheme is not asymptotically linear in
A (although for short stretches of A it may appear to be
linear). For contiguousalternatives, there does seem to be
a theory that will yield an asymptotically linear expres-
sion in A (B. Yakir, private communication), and perhaps
the combinations of A and µ studied in this article can be
said to fall in this category.
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4. In the known baseline case, the GLR Cusum designed for
detecting an abrupt change of mean from 0 to a differ-
ent � xed value is a viable option. However, in the un-
known baseline case considered in Section 4, this avenue
is closed. The reason is that it is not possible to make a
simple reduction of the problem to one based on residuals
of the pre-change regression, because the regression para-
meters are unknown. The ARL to false alarm of the GLR
procedure appropriate for the unknown baseline case of
detecting an abrupt increase of mean from one unknown
value to another is calculated under the assumption that
all observations have the same mean. If this procedure
were to be applied to the original data considered in the
change-of-slope-of-regression detection problem (where
pre-change mean is a function not constant in time), then
the true ARL to false alarm would be (very) different from
the nominal one.

5. The crux of our article deals with an abrupt change of re-
gression slope. One can imagine a more re� ned version,
where the change of slope is gradual. Although one can
construct models for a continuous change of slope that
enable computational tractability, our experience (based
on Monte Carlo) indicates that nothing is to be gained
by such a re� nement. Intuitively, the reason for this is
that such a re� nement is basically a modi� cation of the
very early departures from the in-control state, and that a
change is in effect typically will be hard to distinguish at
such an early stage. By the time a change becomes appar-
ent, the slope will be close to being constant, and the time
of onset of the change will be in the background.Because
the most recent observations carry the greater weight in
the surveillance statistic, modeling the start of the change
as an abrupt change of slope or as a continuous one will
matter little.

APPENDIX A: TECHNICAL DETAILS

Here we present technical details that lead to the formulas given
in Sections 2 and 4, and describe computational issues that arise in
implementing the various schemes.

A.1 Known Baseline Parameters

A.1.1 Choosing a Representative. If µ is the chosen representative,
then, under Pk , Yi » N.0; 1/ for i < k and Yi » N.µ.i ¡ k C 1/;1/ for
i ¸ k. Because the Yi’s are independent, the Pk versus P1 likelihood
ratio of Y1; : : : ;Yn is

3n
k .µ/ D

fPk .Y1; : : : ;Yn/

fP1 .Y1; : : : ;Yn/
D

nY

iD1

fPk .Yi/

fP1 .Yi/
D

nY

iDk

fPk .Yi/

fP1 .Yi/

D
nY

iDk

expfµ.i ¡ k C 1/Yi ¡ µ2.i ¡ k C 1/2=2g

D exp

»
µ

nX

iDk

.i ¡ k C 1/Yi ¡ µ 2.n ¡ k C 1/

¢ .n ¡ k C 2/.2n ¡ 2k C 3/=12

¼
: (A.1)

A.1.2 Choosing a Prior and Creating a Mixture. For

F.x/ D
.8.

x¡¹
¿ / ¡ 8.¡ ¹

¿ //C

8.
¹
¿ /

;

3n
k .F/ D

Z 1

¡1
3n

k .µ/ dF.µ/

D 1

8.
¹
¿ /

Z 1

0
exp

Á

µ

nX

iDk

.i ¡ k C 1/Yi

¡ µ2.n ¡ k C 1/.n ¡ k C 2/.2n ¡ 2k C 3/

12

!

¢ 1p
2¼ ¿ 2

exp

»
¡1

2
.µ ¡ ¹/2

¿2

¼
dµ

D
exp

n
¡ 1

2
¹2

¿ 2

o
exp

»
1
2

.
Pn

iDk.i¡kC1/YiC ¹

¿ 2 /2

1
¿ 2 C .n¡kC1/.n¡kC2/.2n¡2kC3/

6

¼

¿

q
1
¿ 2

.n¡kC1/.n¡kC2/.2n¡2kC3/
6

¢

8

Á Pn
iDk.i¡kC1/YiC ¹

¿ 2q
1

¿ 2 C .n¡kC1/.n¡kC2/.2n¡2kC3/
6

!

8
¡ ¹

¿

¢ : (A.2)

A similar calculation for F.x/ D 8..x ¡ ¹/=¿ / gives the same result,
except that the 8.¢/=8.¢/ part of (A.2) is cancelled. This accounts
for (10).

A.1.3 Choosing an Estimator. From (A.1), we obtain that the Pk
versus P1 log-likelihoodratio of Y1; : : : ;Yn¡1 is

µ

n¡1X

iDk

.i ¡ k C 1/Yi ¡ µ2.n ¡ k/.n ¡ k C 1/.2n ¡ 2k C 1/

12
:

Therefore, the maximum Pk-likelihood estimator of µ based on
Y1; : : : ;Yn¡1 is

Oµn
k D

Pn¡1
iDk .i ¡ k C 1/Yi

1
6 .n ¡ k/.n ¡ k C 1/.2n ¡ 2k C 1/

;

which accounts for (13).

A.1.4 A Semiparametric Estimator. For i ¸ k,

fPk .Yi/

fP1 .Yi/
D exp

©
YiEkYi ¡ .EkYi/

2=2
ª
: (A.3)

Estimating EkYi by YC
i¡1 or by Yi¡1 accounts for (16). Although

this is a very simplistic estimate (and generally is an underesti-
mate/overestimate for an increase/decrease in slope), it is obviously
robust against departures from a linear regression, and could be ex-
pected to do well for changes of large magnitude. This intuition is
corroboratedby Table 2.

A.2 Unknown Baseline Parameters

A.2.1 Choosing a Representative. Due to the invariance property
of Wi and W¤

i , calculation of 3n
k and 3n¤

k can be done without loss
of generality for ® D ¯ D 0, ¾ D 1. We sketch a derivation of 3n¤

k ;
the derivation of 3n

k is completely analogous. A full derivation can be
obtained from the authors on request.

Note that, conditional on Z2 and the denominator of W¤
i , the vari-

ables W¤
4 ; W¤

5 ; : : : are (conditionally)independent.Therefore,we eval-
uate 3n¤

k by � rst conditioningon Z2 and the denominator.
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For k ¸ 4, the variables Z2 and Z3 have the same distribution under
Pk as under P1 . By conditioning � rst on Z2, note that

f .x; y/

Z2;Z3¡Z2
2p
3

x3¡Nx2
x2¡x1

D Á.x/ Á

³
y C x

2
p

3

x3 ¡ Nx2

x2 ¡ x1

´
; (A.4)

so that

f .x/

Z2 jZ3¡Z2
2p
3

x3¡Nx2
x2¡x1

Dy

D 1r
2¼ 1

1C 4
3 [b]

¡ x3¡Nx2
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¢2
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x C y 2p
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3 .
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1
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3

¡ x3¡Nx2
x2¡x1

¢2

)

: (A.5)

Denote

°i;º D 0 for i · º ¡ 1;

¹i;º D EºZi D 0 for i · º ¡ 1; (A.6)

¹i;º D EºZi D
q

[b] i¡1
i .°i;º ¡ N°i¡1;º/ for i ¸ º;
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N°j;º D
jX

iD1

°i;º

j
:

For k ¸ 4,
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: (A.7)

Calculate this by conditioning on

Z3 ¡ Z2
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x2 ¡ x1
D y;
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where
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It follows that
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from which the expression for 3n¤
k in (23) follows. The expression for

3n
k in (23) is obtained in similar fashion. The only difference is that

Z3 ¡ Z2
2p
3

x3 ¡ Nx2

x2 ¡ x1

is replaced in (A.7) by its absolute value, which causes the boundaries
of the integral in (A.8) to be .0;1/ and the integral to be multiplied
by 2, which cancels in the ratio (A.10).

A.2.2 Choosing a Prior and Creating a Mixture. Note that
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from which (27) follows. Calculation of 3n¤
k .F/ is similar, with

R 1
0

in (A.11) replaced by
R 1
¡1 of the absolute value of the integrand.
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A.3 Computational Issues

The major computational issue is the calculation of

³.x/ D
gm.x/

gm.0/
; (A.12)

the dif� culty being that both numerator and denominator become very
large as m grows. Note that
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Hence

³.x/ D e¡ 1
2 x2

1X

jD0

xj

j!
2

mCj¡1
2

0
¡ mCjC1

2

¢

£
2

m¡1
2 0

¡ mC1
2

¢¤

(A.15)

D e¡ 1
2 x2

1X

jD0

.
p

2x/j

j!

0
¡ mCjC1

2

¢

0
¡ mC1

2

¢ :

Operationally, we � nd an integer J such that
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¹max D max
1·j·J

¹j;

where J and ¹max depend on x, so that

³.x/ »D e¡ 1
2 x2

³ JX

jD0

e¹j¡¹max

´
e¹max : (A.17)

When programming the procedure,we � rst calculate ¹1; : : : ; ¹J , from
which we obtain ¹max. For all values of x that we encountered in ex-
tensive simulations (under conditions where there is no change as well
as those where there is a change, either large or small, the value of
J was easily manageable (a few thousand at most). Thus for practical
purposes, (A.17) provides an accurate evaluation of ³.x/. There ex-
ists a recursion for calculating ³.x/, but using it gives far less accurate
results than (A.17).

The second concern is computation time. It is clear that in the un-
known baseline case, the computational complexity is considerable,
and computation time increases rapidly with n. Although for a single
application the operation time is not long enough to be a major issue,
when simulating the procedure—especially when there is no change,
and the procedure is run to estimate the ARL to false alarm—the sim-
ulaton time is so large that a shortcut is needed. We solved the problem

by creating a grid of values ³.x/ and interpolatingfrom the grid for x’s
arising in the simulation instead of calculating ³.x/ every time anew.
The interpolation is easy; we found that for values of x not very close
to 0, ln.³.x// is almost perfectly linear in x when m is large. The time
saved by calling the grid and interpolating instead of calculating ³.x/

wherever it appears is tremendous, and is what makes the simulations
feasible. If the sequencebeing monitored can become very large before
a change occurs, then the grid approach should be used in practice.

The same method applies to the case where the post-change regres-
sion may have either higher slope or smaller slope. Simply break up
the integral

Z 1

¡1
jzjme¡ 1

2 .z¡x/2
dz

D
Z 1

0
zme¡ 1

2 .z¡x/2
dz C .¡1/m

Z 0

¡1
zme¡ 1

2 .z¡x/2
dz

D
Z 1

0
zme¡ 1

2 .z¡x/2
dz ¡

Z 1

0
tme¡ 1

2 .tCx/2
dt; (A.18)

to which (48) and its sequel can be applied.

[Received August 2001. Revised June 2002.]
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